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A new method of evaluation of matrix elements, involving integration 
of a very rapidly oscillating function, has been developed. The 
proposed procedure is accurate, efficient, and fast and has been applied 
to the calculation of potential matrix elements of the trinucleon system 
with Reid soft core potential in hyperspherical harmonics expansion 
method. © 1994 Academic Press, Inc. 

INTRODUCTION 

One of the important tools for the solution of a few-body 
Schr6dinger equation is the hyperspherical harmonics 
expansion method (HHEM) [ 1]. Ever since its develop- 
ment in the early 1970s, the method has extensively been 
used in molecular, atomic, nuclear, and quark bound state 
problems [2]. In atomic and molecular problems, the par- 
ticles interact via a pure Coulomb potential. In a few quark 
systems the potentials employed have been more involved 
than the Coulomb potential but still have a structure which 
is much simpler than typical "realistic nucleon-nucleon 
(NN) potentials," like Reid soft core (RSC) [3], Reid Hard 
Core (RHC) [3], Hamada Johnston (HJ) [4], Paris [5], 
Bonn [6], etc. potentials. Use of such realistic potentials in 
the HHEM for nuclear problems leads to a very com- 
plicated numerical procedure, so much so that no HHEM 
calculation, even for the trinucleon system, with realistic 
NN potentials has so far been reported. All the HHEM 
calculations for few-nucleon systems have so far been 
restricted to simple S-projected potentials [7]. On the 
other hand, the Faddeev equation method (FEM) [8] is 
particularly suited for realistic potentials. For example, the 
RSC potential depends on the state of the interacting pair of 
nucleons; in the FEM, the equation for each channel can be 
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written separately and, hence, the appropriate interaction 
potential for the channel can be included [ 8 ]. On the other 
hand, for the HHEM one has to evaluate the matrix 
elements of the full interaction potential between 
appropriately antisymmetrised few-nucleon states [10]. 
This is why there is an abundance of FEM calculations with 
realistic potentials for a trinucleon system while no such 
calculation by HHEM has been reported. 

The first step in facing the challenge of HHEM with a 
realistic NN potential is to evaluate the matrix elements 
involved. In this communication, we present an elegant 
numerical algorithm for fast and accurate evaluation of the 
matrix elements for the realistic RSC potential. We will also 
critically examine some typical terms of the interaction 
which may present numerical difficulties and we establish 
that the present method is applicable to such terms as well. 
We will finally demonstrate our method with the numerical 
evaluation of a few typical matrix elements. 

METHOD 

In HHEM the few-nucleon wave function is expanded 
into a complete set of hyperspherical harmonics (HH) [ 1 ] 
spanning the angular hyperspace (I2). Substitution of this 
expansion into the Schrrdinger equation and projection 
onto a particular HH gives a set of coupled differential 

eTS eigenvalue equations for the partial waves U2K+L(r ). 

2 

- -  ~ r 2 U2K+ L(r) 

"[- 2 ,"~ KE TSL ~ ~ d T' S" t~X,dT,S,L,(r) U2K, + v(r) = 0, 
K' e" T'S'L' 

(1) 
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where r is the hyperradial variable and m is the nucleon 
mass; E is the energy of the system and e represents a par- 
ticular symmetry component of the full wave function; T, S, 
L are respectively the total isospin, spin, and orbital angular 
momenta of this component, and K represents the grand 
orbital quantum number. 

For the trinucleon system the coupling matrix element 
c K e T S L  ~ x K, er,S,L,tr) involves integrals of the form [ 10] 

1 

I , , , ( r ) = f  e~'P)(x) V(ru) e~,"")(x)(1-x)~(1 +x)adx, 
- - 1  

(2) 

where V(rq) is the interaction potential forthe (ij) pair and 
= ll + ~ and fl = 12 + ~,~ P,<~'P) is a Jacobi polynomial, 7 = 

(c~ + a')/2, 6 = (fl + i f ) /2 ;  11 and 12 are the orbital angular 
momenta of the interacting pair and the third particle with 
respect to the centre of mass of the pair respectively such 
that L = !1 + 12. Primed quantites refer to corresponding 
quantities of the ket vector. 

As mentioned earlier, the RSC potential depends on the 
spin (s), isospin (t), and total angular momenta ( j )  of the 
interacting pair, with the restriction j ~< 2. Whenever only 
one value of l is allowed by angular momentum selection 
rule and symmetry of the pair, the potential is purely cen- 

. tral, while when more than one l value is allowed for the 
same (tsj) component, the potential is a sum of central, 
spin-orbit, and tensor terms. The radial dependence of each 
of the terms is taken as a sum of Yukawa terms multiplied 
by powers o f r ~  1 (up to second power). Thus a typical term 
of the RSC potential contains a radial dependence of the 
form 

e-ur 
V(r,~) = V(rx/(1 + x ) / 2 ) =  V 0 (1 +x) p/2 (3) 

In Eq. (3)/1 is the pion mass parameter (/z = 0.7 fm -1) and 
p is an integer ~<3. Substitution of this form of V(r~) in 
Eq. (2) shows that the principal value of I,,, exists for 

12+l'2+3>~ p. (4) 

Since each of 12 and l~ is an integer />0 and p ~< 3, condi- 
tion (4) is always satisfied. 

For large values of n and n', the integrand in Eq. (2) 
involves a large number of oscillations in the interval 
[ - 1, 1 ] and a direct numerical evaluation with high preci- 
sion becomes both slow and tricky. To evaluate I,,, we 
expand V(r~/(1 +x)/2)  in the complete set of Jacobi 
polynomials {P~"'P")} for a fixed value of r, 

V(r x/(1 + x) /2)=  V0 
e - u r  x / (  1 + x ) / 2  

( 1 + x )  p / 2  

= ~ a,,,(r) P~,~"'P")(x). (5) 

The potential multipole a,,,(r) is given by 

f l  V(rij) P~"'P")(x)( 1 -x)~"(  1 + x) ~" dx, a.,,(r) = (1/h~',: "~') -1 

(6) 

where h]',; '~" is the norm ofa Jacobi polynomial. The choices 
of ~" and if' are arbitrary and for convenience we take 
~,,-tc,,_e -2.-! Substituting the expansion (5) in Eq. (2) we 
have 

I,,,(r)= ~ a,,,(r)(nln" In'), (7) 
n" = 0 

where the geometrical structure coefficients (GSC) 
(n[ n" In') is given by 

f l  P~'~)(x) P~2"'P")(x) P~?"P'I(x) < nl n" In') = -1 

x (1 - x )  ~' (1 + x )  6 dx. (8) 

Evaluation of Inn' using Eq. (7) is not advantageous if the 
sum over n" is unrestricted. However, P~'~) is a polynomial 
of degree n and satisfies orthogonality relation [ 11 ] in the 
interval [--1,  1], with respect to the weight function 
( 1 - x )  ~ (1 + x)P; then combining any two of the Jacobi 
polynomials and using the orthogonality of the third, one 
can see [9] that (n[ n" in') vanishes unless n" satisfies 
relation 

nmin<~n" ~ n . . . .  (9) 

where nmi n and nma x can be expressed in terms of ll, 12, l'1, 
l;, n, and n'. Such a restriction on n" will fail if by isolating 
one Jacobi polynomial, together with its appropriate weight 
factor, the remaining part of the integrand in Eq. (8) is not 
a polynomial. On the other hand, if n" is limited by the 
inequality (9), Eq. (7) is replaced by 

nmax 

I,,,(r) = ~ a,,,(r)(n] n" In'). (10) 
n"  = nmln 

Since only a finite number of terms contribute, Eq. (10) is 
particularly convenient for the evaluation of Inn,(r). 
Furthermore, the GSC (nl n" in ')  does not depend on r 
and can be calculated once only and stored for all values 
of r. The GSC in turn can be calculated by using the com- 
pleteness property [ 11 ] of P~"'~")(x) and by setting up a 
system of linear inhomogeneous equations, for which very 
fast and accurate computer codes exist [9]. To evaluate 
In,,(r), using Eq. (10), we need to calculate the potential 
multipoles an,,(r). For the potential matrix element, we will 
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always have l'2= 12, due to the orthonormality of the spec- 
tator part of the wave function. For  central and spin orbit 
potentials ll = l'1, while for the tensor terms l I and l'1 may 
differ. Hence we consider two specific cases which are the 
only two possibilities for the RSC potential: 

Case 1. Ii = l'l, 12 = l'2. In this case ~ = c~' = l 1 + ½, fl --- 

f l '=  12 + 1, 0~"= f l "=  ½. When one Jacobi polynomial with 
its appropriate weight factor is isolated from the integrand 
of Eq. (8), the remaining part of the integrand becomes two 
Jacobi polynomials multiplied by a polynomial of x. Hence 
the latter can be expanded in the complete set of the 
previously isolated Jacobi polynomial and use of the 
orthogonality relation gives the selection rule 

and 

1 

a,,,(r) = ( 1/h~: 'a") f V'(rij) P~"'a")(x) 
- - 1  

x (1 - x )  ~" (1 + x )  p" dx. (14) 

In this way we are introducing a possible singularity at the 
upper limit of the integrand of Eq. (14). But for the RSC 
potential, Ii, and l'~ are integers ,%< 3; moreover, since ll and 
l'~ are both even or both odd integers, v = 1. Then, since 
~,, = fl,, = i and p ,%< 3, we see that the principal value of the 
integral in Eq. (14) exists. In this modified procedure the 
selection rule for n" becomes 

I n - n ' l  <....n" <~. (n + n' + ll +12). (11) 

In this case the potential multipole is given by Eq. (6), 
which, as we have already noted, exists for all terms of the 
RSC potential. 

Case 2. ll # l'1, 12 = 1'2. In this case ~ = ll + 1, ~, =/'1 + 1, 
' 

= ~. Isolating one Jacobi polynomial 
P~'a)(x) or P~,"a')(x) with its appropriate weight factor 
( l - x )  ~ ( l + x )  ~ or ( l - x )  ~ ' ( l + x )  p', one is left with a 
factor ( 1 - x )  (1~-t~)/2 or ( 1 - x )  (t~-~v2 in the integrand of 
Eq. (8). The symmetry of the interacting pair demands that 
l 1 and l'~ be both even or both odd integers. Hence 
[(l'1 - Ii )/21 is a positive integer = v (say) and the remaining 
factor is (1 - x )  ~ or (1 - x ) - ~ .  In one of the two cases, the 
exponent is negative and the expression is not a polynomial, 
so that n" is no more restricted to a finite set and the 
proposed procedure fails. However, in this case we can 
include the factor ( 1 - x )  -v with the potential function 
V(r x / ~  + x)/2) and rewrite Eq. (2) as 

1 

I,,,(r) = f P(~'P)(x) V'(rij) P(,"P)(x) 
- - 1  

x ( 1 - x ) Y + ~  (l + x)~ dx, (12) 

where 

V ' ( r ~ ) =  V o 
e - t t r  

(1 + x )  p/2 (1 - x )  v" 

Thus 

In, , (r)= ~ a,,,(r)(n[ n" In'), 
n" = 0 

where 

max(n' - n, 0, n -- n' -- 2) 

<,n" <~(n+n' +( l l  +l'1)/2 + l z +  1). (15) 

Since, again we get a finite set of allowed n" values and the 
potential multipole an,,(r ) exists, the modified procedure will 
be valid. 

R E S U L T S  A N D  D I S C U S S I O N  

To illustrate the viability of our procedure, we have 
calculated typical potential matrix elements by the 
proposed method and compared it with a direct numerical 
evaluation of Eq. (2). We used a 32-point Gaussian quad- 
rature for the potential multipole a,(r) used in the present 
method. For  a direct numerical integration of I,n,, it was 
found necessary to integrate in four subintervals, using 
32-point Gaussian quadrature for each of the subintervals, 
in order to obtain a comparable precision of one part in 108. 

TABLE I 

Results of the Calculation of I,,, for Case I 

By direct By proposed 
V(r12)  l I l 2 r n n '  method method 

(fm) 

V(3p1)  

V T ( 3 S I  - -  3D1) 

3 3 2.1 2 2 71.89433129 71.89433204 
3 3 2.1 5 4 -100.68444235 -100.68444263 
3 3 2.1 8 8 203.89916394 203.89916465 

2 2 2.1 2 2 -54.88694387 -54.88694404 
2 2 2.1 7 2 27.93785697 27.93785744 
2 2 2.1 9 9 -315.87100766 -315.87101393 
2 2 5.1 2 2 -3.087294553 -3.087294584 
2 2 5.1 8 5 10.53900643 10.539009623 
2 2 5.1 9 9 -28.06005923 -28.06005981 

f 
l 

(n[ n" In') ~- P(~'a)(x) P~%P")(x) P~,~"P')(x) 
1 

x ( 1 - x ) r + ~  (l + x)a dx (13) 

V T ( 3 p 2  - -  3F2) 3 3 2.1 2 2 9.00314219 9.003142255 
3 3 2.1 8 7 --14.09590289 -14.0959031 
3 3 5.1 2 2 0.72367197 0.72367199 
3 3 5.1 8 7 --2.39060681 -2.39060685 
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TABLE II 

Results  o f  Ca lcu la t ion  o f  I,n, for Case  II 

V(rl2) l I l '  l l 2 
(fm) 

By direct By proposed 
r n n' method method 

V T ( 3 S I  --  3D1) 

VT(  3P 2 -- 3F2) 

0 2 0 2.1 2 5 296.22598207 296.22598408 
0 2 0 2.1 5 10 547.25890677 547.25893564 
0 2 0 5.1 2 5 47.79344825 47.79344831 
0 2 0 5.1 5 10 128.97650551 128.97650622 
0 2 2 2.1 2 5 18.39132987 18.3913325 
0 2 2 2.1 10 9 222.48253039 222.48253188 
0 2 2 5.1 2 5 1.20875072 1.20875068 
0 2 2 5.1 10 9 28.12092451 28.12092567 

1 3 1 2.1 2 9 -1.813809774 -1.813809779 
1 3 1 2.1 10 9 --33.8835417 -33.8835405 
1 3 1 5.1 2 9 -0.58806388 -0.5880639 
1 3 1 5.1 10 9 -7.290811 -7.2908109 

N(N+ 1)/2 numerical integrations for direct evaluation of 
the potential matrix for a given value of r, whereas the 
present procedure requires about 2N integration for the 
potential multipole for a given r. Hence as N increases this 
procedure rapidly becomes economical in computation 
time. Moreover, calculation of the GSC by the linear 
inhomogeneous equatin method is very fast and accurate so 
that when these are used together, one has an elegant 
numerical procedure. 

ACKNOWLEDGMENTS 

This work has been financed by the University Grants Commission 
(UGC), India. One of us (S.B.) would like to acknowledge receipt of a 
research fellowship of the UGC. 

REFERENCES 

Table I presents the results for a few chosen central terms of 
the RSC potential with typical but arbitrarily chosen values 
ofl~, 12, n, n', and r. In Table II we present similar results for 
the second case considered above with the tensor parts of 
RSC potential. In most cases the agreement is up to eight 
significant digits or more. The calculations have been per- 
formed on an EISA-based AT486 personal computer with 
double precision. The present procedure is roughly 10 to 12 
times faster than direct numerical integration. This shows 
that the present procedure works accurately in all cases. 

The procedure proposed here is thus a valuable tool for 
numerical evaluation of the matrix elements. The direct 
integration of the full potential matrix must be done for 
each value of r and for each potential components 
separately, whereas the present procedure calls for calcula- 
tion of the GSC (which is independent of r) once only 
(and stored), while for each value of r and for each potential 
component, the potential multipole has to be evaluated 
numerically. If the HH basis is truncated to N elements, 
the potential matrix will be a N x N matrix and one needs 

1. Yu. A. Simonov, Soy. J. Nucl. Phys. 3, 461 (1966); J. Bruinsma et al., 
"Few Particle Problems in Nuclear Interaction," edited by I. Slaus 
(North-Holland, Amsterdam, 1973), p. 368; G. Erens, J. L. Visschercs, 
and R. Van Wageningen, Ann. Phys. (N. Y.) 67, 461 ( 1971 ); J. L. Ballot 
and M. Fabre de la Ripelle, Ann. Phys. (N. Y.) 127, 62 (1980). 

2. V. B. Mandelzweig, Nucl. Phys. A 508, 63c (1990). 

3. R. Reid, Ann. Phys (N.Y.) 50, 411 (1968). 

4. T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962). 

5. M. Lacombe etal, Phys. Rev. C21, 861 (1980). 

6. R. Machleidt, K. Holinde, and C. Elster, Phys. Rep. 149, 8 (1987). 

7. T. K. Das, H. T. Coelho, and M. Fabre de la Ripelle, Phys. Rev. C 26, 
2288 (1982). 

8. J. L. Friar et al., Phys. Rev. C 37, 2859 ( 1988 ); C. R. Chen et al., Phys. 
Rev. C31, 2266 (1985); C. Hajduk and P. U. Sauer, Nucl. Phys. A 369, 
321 ( 1981 ); T. Sasakawa et al., Phys. Rev. Lett. 53 18177 (1984). 

9. T. B. De and T. K. Das, Phys. Rev. C36, 402 (1987). 

10. T. K. Das and S. Bhattacharyya, Pramana, J. Phys. 40, 189 (1993); S. 
Bhattacharyya and T. K. Das, in Proceedings, DAE Symposium on 
Nuclear Physics, BARC, Bombay, Vol. 35B, 1992, p. 148. 

11. M. Abramowitz and I. A. Stegun (Eds.), Handbook of  Mathematical 
Functions (Dover, New York, 1970), p. 773. 


